

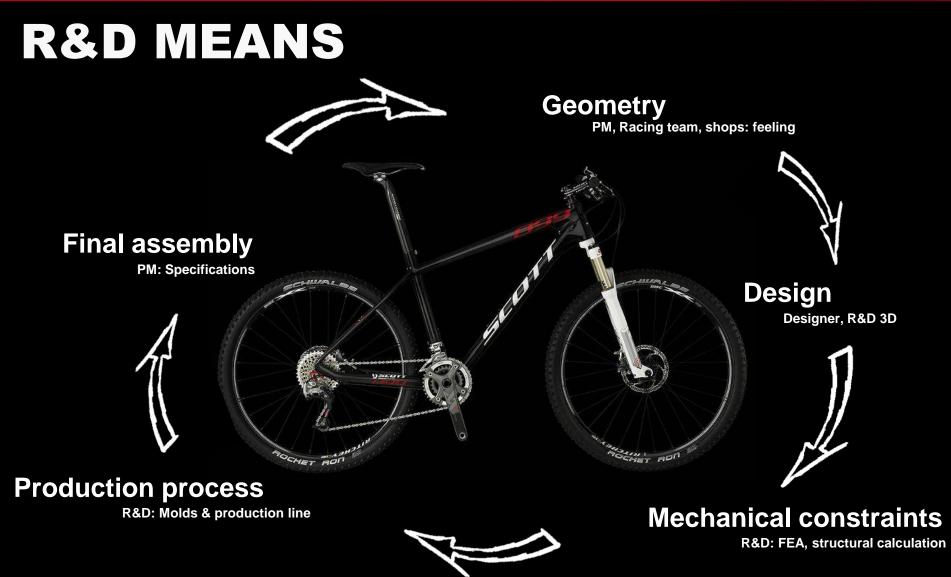
LIGHTEST production hardtail in the world

-Trek Elite 9.9 SSL -Specialized S-works Stumpjumper Carbon HT 1100g.

-Scott old Scale: -Cannondale Flash: -Merida O-Nine: -Scott new Scale: 1100g.

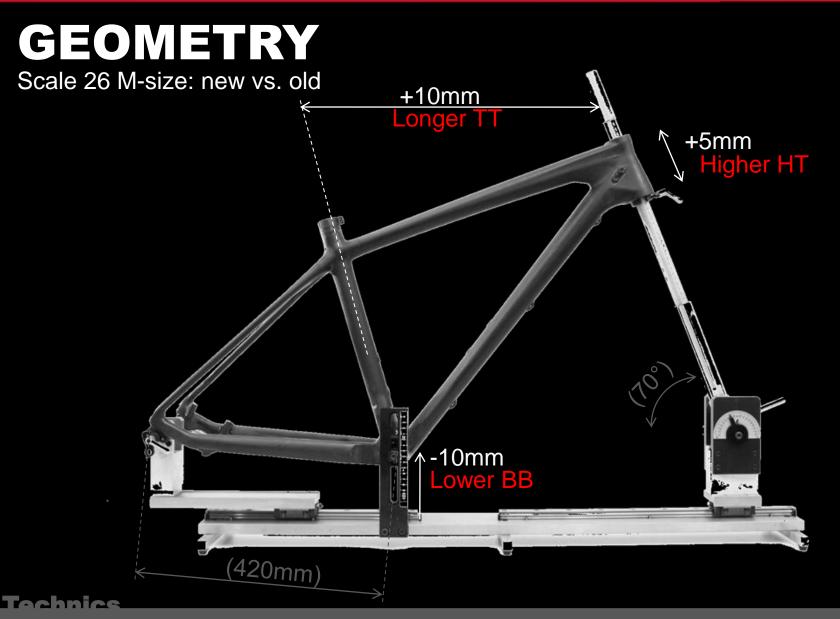
970g. 950g. 930g? 899g. (max.!)

LIGHTEST production hardtail in the world



Bring the **COMFORT** concept one step further Reach the optimal **STIFFNESS**

FULL CARBON structure



More GEOMETRY details...

HEADTUBE Same wall thickness, lighter, stiffer...

OLD SCALE

JUBE TO TUBE

1 1/8' HT

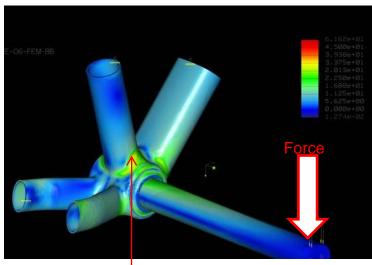
Tachnice

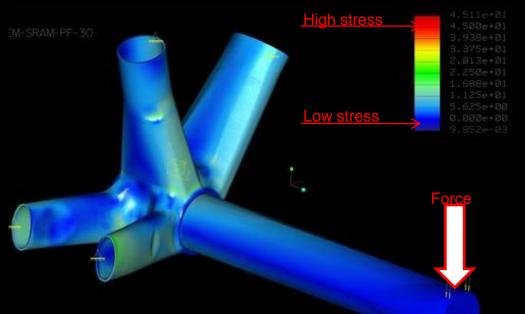
More IMP details...

1.5'

HEADTUBE

Stiffness: +10% Weight: -15g.


IMP 3 TECHNOLOGY TAPEREDH.T.



BOTTOM BRACKET Finite Elements Analysis: Stress concentration

OLD SCALE

Higher stress

Lower max. stress & smoother stress repartition

FEA optimisation: less stress means less reinforcement (lightweight design)

More FEA details...

IMPTECHNOLOGY

OLD SCALE

BOTTOM BRACKET Press Fit BB

FEA High stress zone = More material

FEA smooth stress transition = Less material

IMP + PFBB = Full carbon structure Stiffness & Lightweight

Stiffness

ALLOY INSERT THREADED BB

Technics

More BBPF details...

IMPTECHNOLOGY

BOTTOM BRACKET

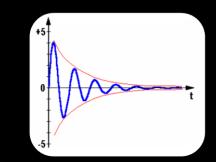
Stiffness: +15% Weight: -30g.

IMPTECHNOLOGY

INTEGRATED SEATCLAMP

Weight: -11g

STANDARD CLAMP


Lightweight (Ti bolt) = 16g.

Clamp = 5g!!!!

REARSTAYS Comfort / Performance

PERFORMANCE Lateral stiffness **COMFOR** Vertical compliance

+5

Technics

TUBULARSTRUCTURE

REARSTAYS Comfort / Performance

STANDARD Concept

Most of the competition focuses on the comfort benefits of the seatpost... BUT -Descending while standing on the pedals = Rider receives no comfort benefit -High deformation of the seatpost = Rider feels a loss of power Comfort **Compliance area**

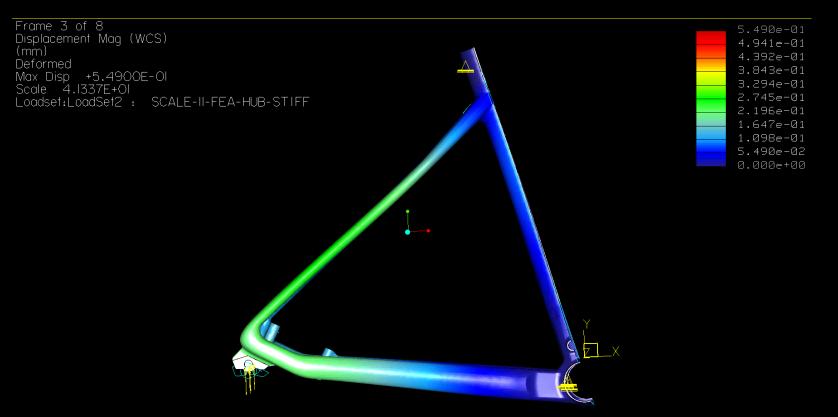
SCOTT Concept

80% of the comfort must come from the frame rear triangle

= Rider receives maximum comfort benefit regardless of body position

TUBULARSTRUCTURE

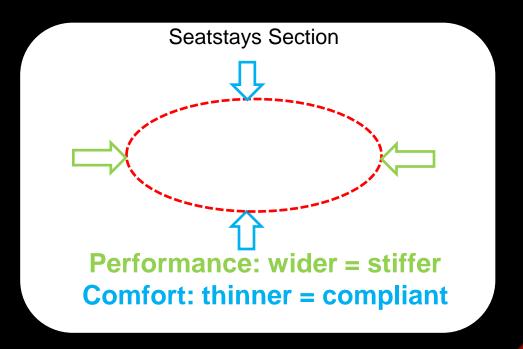
Comfort Compliance area


<u>Technics</u>

REARSTAYS Finite Elements Analysis: Vertical compliance (comfort)

"Windowl" - scale_II_fea_comfort - scale_II_fea_comfort

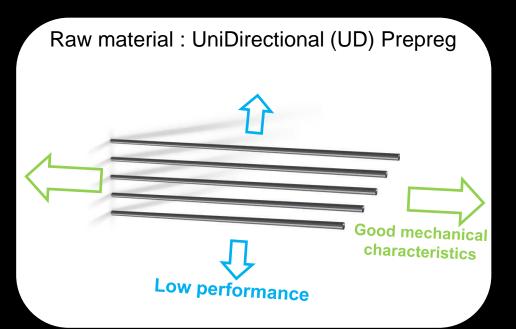
More FEA details...



TUBULARSTRUCTURE

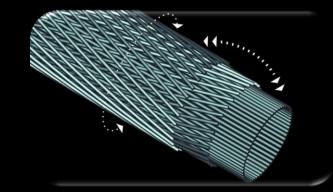
REARSTAYS Comfort / Performance

1- Frame design:



REARSTAYS Comfort / Performance

2- Material: (Fibers orientation and wall tickness)



Each tube/area of the frame is a combination of different layers, with different orientations, helping to deliver the optimal characteristics

Technics

More CARBON details...

REARSTAYS Structure

STANDARD Construction

Seatstays, chainstays and solid dropout are bonded together:

= Complicated structure (bonding, overlaps, heavy)

New TUBULAR STRUCTURE

One piece tubular seatstay, chainstay & dropout = Homogeneous structure (less material, optimized performance, less weight)

TUBULARSTRUCTURE

Technics

More IMP details...

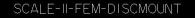
REARSTAYS Comfort: +20% Lateral stiffness: +10% Weight: -25g.

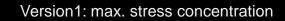
Comfort measurement (deformation with 200kg on seatpost (measured @ dropout): -Old Scale: 3.70mm -New Scale: 4.66mm

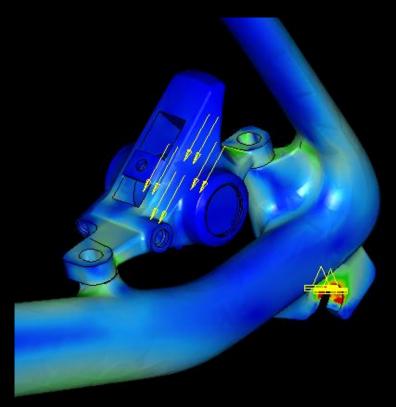
TUBULARSTRUCTURE

REARSTAYS: DISCMOUNT

- Comfort = seatstay deformation
- The disc is fixed on the chainstay to avoid seatstay vibration during braking.




DIRECTPOSTMOUNT160



REARSTAYS: DISCNOUNT Finite Elements Analysis: Stress concentration example

Version2: better stress repartition, lower max. stress

REARSTAYS: DROPOUTS

Replaceable hanger Same as Genius & Spark

Carbon dropouts

carbondropout **Secon**

ASSEMBLY

ADDITIONNAL PARTS:

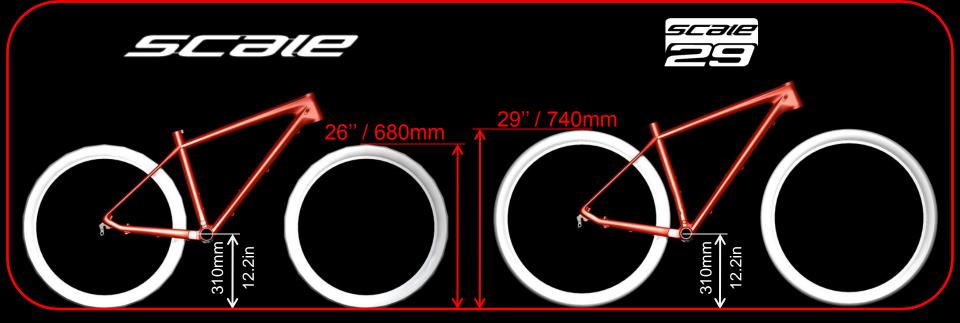
ASSEMBLY

FD GUIDE (Only delivered with all HMX frames)

FINAL WEIGHT COMPARISON

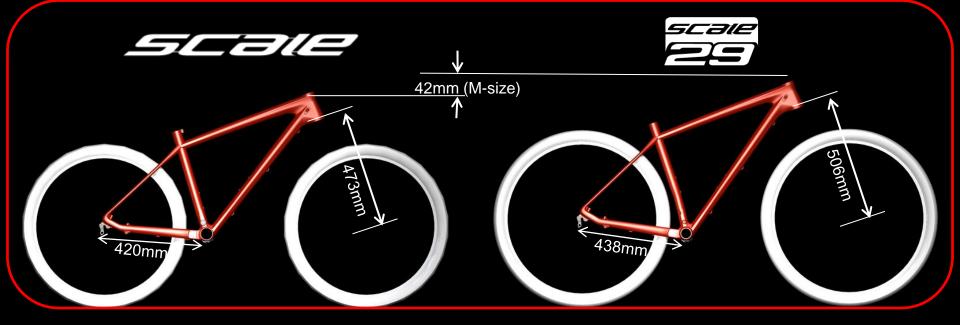
	OLD SCALE		NEW SCALE
RAME			
Headtube		-15g	
Bottom Bracket	970g.	-30g	880g.
Rearstays		-25g	
Structure		-20g	
LEMENTS			
Cable routing Seatclamp	27g.	-5g -11g	11g.
	997g. Average weight (+/-25g	.)	<899g! MAXIMUM weight !
SSEMBLY			
Discmount	direct mount (35g.)	-35g	post mount (0g.)
Bottom Bracket	threaded (100g.)	-20g	press fit (80g.)

Technics


More STRUCTURE Weight Saving details...

Geometry:

Bigger wheels, same BB height



Geometry:

Different position and riding skills

Frame detail (FD mount)

29' vs 26'

Weight:	Complete 29' bike has a slight weight penalty compared to a 26' with the same specs.
Advantages:	faster rolling on smooth terrain smoother ride on rough terrain better cornering traction good geometry for XL sizes
Disadvantages:	weight compromised handling due to the big wheels compromised geometry for S sizes

scor

SCOTT

Thanks for your attention!

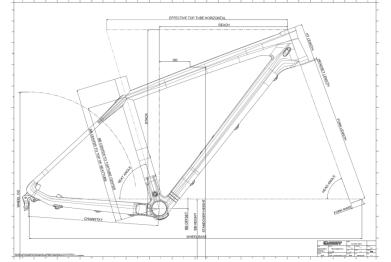
MORE DETAILS

Geometry

IMP / Tube to Tube

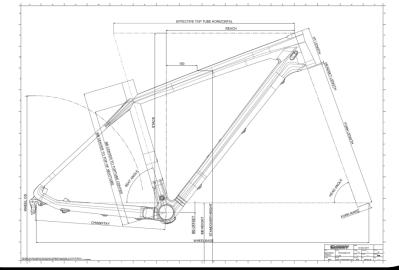
Raw material

Finite Elements Analysis


Press Fit BB

Frame structure

GEOMETRY SCALE²⁶


		S	М	L	XL
fork rake	mm	39.0	39.0	39.0	39.0
A/ head angle	۰	70.0	70.0	70.0	70.0
fork length	mm	473.0	473.0	473.0	473.0
headset length	mm	2.5	2.5	2.5	2.5
B/ head tube	mm	110.0	120.0	135.0	160.0
C/ top tube horizontal	mm	555.0	585.0	610.0	640.0
D/ actual top tube	mm	496.0	518.0	541.0	570.0
E/ seat angle	۰	73.5	73.5	73.5	73.5
F/BB center to top of seattube	mm	390.0	440.0	480.0	530.0
G/BB center to toptube center	mm	324.0	374.0	414.0	464.0
H/ chainstay	mm	420.0	420.0	420.0	420.0
I/ BB offset	mm	-30.0	-30.0	-30.0	-30.0
J/ BB height	mm	310.0	310.0	310.0	310.0
G/ standover height	mm	733.0	765.0	792.0	830.0
L/ wheel base	mm	1043.0	1073.5	1099.5	1131.0
wheel OD (tire:xxxx)	mm	680.0	680.0	680.0	680.0
M/ reach	mm	387.1	414.3	435.1	458.2
N/ stack	mm	566.8	576.3	590.3	613.8
stem length	mm	90.0	90.0	100.0	110.0
cockpit length	mm	645.0	675.0	710.0	750.0

		S	м	L	XL
fork rake	in	1.5	1.5	1.5	1.5
A/ head angle	۰	70.0	70.0	70.0	70.0
fork length	in	18.6	18.6	18.6	18.6
headset length	in	0.1	0.1	0.1	0.1
B/ head tube	in	4.3	4.7	5.3	6.3
C/ top tube horizontal	in	21.9	23.0	24.0	25.2
D/ actual top tube	in	19.5	20.4	21.3	22.4
E/ seat angle	۰	73.5	73.5	73.5	73.5
F/BB center to top of seattube	in	15.4	17.3	18.9	20.9
G/ BB center to toptube center	in	12.8	14.7	16.3	18.3
H/ chainstay	in	16.5	16.5	16.5	16.5
I/ BB offset	in	-1.2	-1.2	-1.2	-1.2
J/ BB height	in	12.2	12.2	12.2	12.2
G/ standover height	in	28.9	30.1	31.2	32.7
L/ wheel base	in	41.1	42.3	43.3	44.5
wheel OD (tire:xxxx)	in	26.8	26.8	26.8	26.8
M/ reach	in	15.2	16.3	17.1	18.0
N/ stack	in	22.3	22.7	23.2	24.2
stem length	in	3.5	3.5	3.9	4.3
cockpit length	in	25.4	26.6	28.0	29.5

GEOMETRY SCALE²⁹

		М	L	XL	
fork rake	mm	46.0	46.0	46.0	
A/ head angle	0	69.5	69.5	69.5	
fork length	mm	506.0	506.0	506.0	
headset length	mm	2.5	2.5	2.5	
B/ head tube	mm	105.0	115.0	125.0	
C/ top tube horizontal	mm	600.0	620.0	640.0	
D/ actual top tube	mm	526.0	542.0	560.0	
E/ seat angle	0	72.5	72.5	72.5	
F/ BB center to top of seattube	mm	440.0	480.0	530.0	
G/ BB center to toptube center	mm	375.0	415.0	465.0	
H/ chainstay	mm	438.0	438.0	438.0	
I/ BB offset	mm	-60.0	-60.0	-60.0	
J/ BB height	mm	310.0	310.0	310.0	
G/ standover height	mm	783.0	810.0	842.0	
L/ wheel base	mm	1096.8	1117.0	1137.9	
wheel OD (tire:xxxx)	mm	740.0	740.0	740.0	
M/ reach	mm	405.0	422.0	439.0	
N/ stack	mm	618.0	628.0	637.0	
stem length	mm	90.0	100.0	110.0	
cockpit length	mm	690.0	720.0	750.0	

		М	L	XL
fork rake	in	1.8	1.8	1.8
A/ head angle	0	69.5	69.5	69.5
fork length	in	19.9	19.9	19.9
headset length	in	0.1	0.1	0.1
B/ head tube	in	4.1	4.5	4.9
C/ top tube horizontal	in	23.6	24.4	25.2
D/ actual top tube	in	20.7	21.3	22.0
E/ seat angle	0	72.5	72.5	72.5
F/BB center to top of seattube	in	17.3	18.9	20.9
G/ BB center to toptube center	in	14.8	16.3	18.3
H/ chainstay	in	17.2	17.2	17.2
I/ BB offset	in	-2.4	-2.4	-2.4
J/ BB height	in	12.2	12.2	12.2
G/ standover height	in	30.8	31.9	33.1
L/ wheel base	in	43.2	44.0	44.8
wheel OD (tire:xxxx)	in	29.1	29.1	29.1
M/ reach	in	15.9	16.6	17.3
N/ stack	in	24.3	24.7	25.1
stem length	in	3.5	3.9	4.3
cockpit length	in	27.2	28.3	29.5

Back to presentation : GEOMETRY

Back to « MORE DETAILS » Menu

IMP / TUBE TO TUBE Carbon process

TUBE TO TUBE

The tubes are produces separately, and then bonded together. Advantage: easy production (8 years ago...). Disadvantage: discontinuity of the strucure in the joints area.

IMP

All tubes are produced in one piece at the same time. Difference to standard monocoque: IMP solid core is used continously from raw material preforming until removal after curing.

Advantage: this ensures homogeneous structure and accurate adherence to the fine lay-up schedule.

Disadvantage: process requiring experience and know how.

Back to presentation: HEADTUBE

Back to presentation: REARSTAYS

Back to « MORE DETAILS » Menu

RAW MATERIAL

While we already use the proven HMF composite fiber on all of our composite high-end bike models, we have improved upon conventional HMF material. This new fiber, which is produced exclusively for Scott, offers 20% more stiffness and is employed on all the areas that need additional rigidity. This new material also allows us to reduce weight and improve riding characteristics. NET stands for Naked External Tubeset, and the LTD model sheds its exterior cosmetic layer, which saves even more weight.

Back to presentation: REARSTAYS

Back to « MORE DETAILS » Menu

We always measure and test all our frames in our laboratories. This data base has been used to validate the computer analysis, which was a key point to optimize the new Scale by:

- reducing the maximum stress in the material
- having fewer and smoother stress concentrations
- evaluating the stiffness and deformation

The Finite Elements Analysis (FEA) reproduces the different tests made in laboratories. Thanks to this we can reduce the weight AND increase the stiffness!

Back to presentation: REARSTAYS

Back to « MORE DETAILS » Menu

PRESS FIT BB Scott Standards

OLD BB: threaded

The frame has to be threaded, which requires alloy material (= bonding and non homogeneous materials). The Bottom bracket weighs 100g.

SCOTT BB STANDARDS: PRESS FIT ONLY (PF)

The goal is to have an homogeneous structure and, for this, to delete all alloy parts on the frame. The press fit does not require any alloy part anymore! Advantages:

- weight reduction of 25g on the frame by eliminating threaded BB shell (full carbon structure)
- weight reduction on the BB (the BB weighs 80g)

PRESS FIT BB Scott Standards

BBPF92

BB Cups Ø41mm

Compatible with all standards cranksets

Compatible with SRAM oversized cranksets Lighter and stiffer final assembly. Reduced Q-factor

PRESS FIT BB **BBPF30 vs. BB30**

The bearings are directly pressed in the frame

-the frame needs an alloy part to respect the tolerances

-if the bearing wears out or is pressed in a wrong direction, the frame is definetly damaged

BBPF30 Approved by Scott!

The bearings are assembled in plastic cups. The plastic cups are pressed in the frame

-the frame can have a full carbon structure (due to the plastic cups interface) -the plastic cup interface avoids to damage the frame during assembly and if the bearing wears out.

LIGHTER AND SAFER

Back to presentation: BOTTOM BRACKET

Back to « MORE DETAILS » Menu

STRUCTURE

A lightweight frame construction starts from the definition of the molds and the joints between each molded element.

Example: one piece IMP front triangle

Back to presentation: FINAL WEIGHT COMPARISON

Back to « MORE DETAILS » Menu