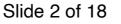


SCOTT Group Proprietary Tests vs. International Safety Standards

SCOTT Sports SA – Bike Tech Workshop 2019



Slide 1 of 18

Introduction EFBE – History

- Founder Manfred Otto and interdisciplinary team of mechanical, electronics and physics engineers from Aachen university
- Development of proprietary high-speed, highprecision, low-cost servo-pneumatic system
- Introduction of first "pedalling forces" fatigue test stand at IFMA 1992
- Incorporation of EFBE Prüftechnik GmbH 1995, installation of brake test stand in Osaka
- 2001 first frame tests for SCOTT Sports SA
- 2016 incorporation of EFBE Co., Ltd., Taichung

Introduction EFBE – EFBE today

- Service provider exclusively to E-Bike and Bicycle industry world-wide
- Development of test methods and test equipment
- Test Services according to ISO, National and European standards and EFBE's proprietary EFBE TRI-TEST[®]
 - TRI-TEST: Fatigue Tests, Maximum Load Tests, Overload Tests
- Development and implementations of brand / manufacturers' standards
- Manufacture, service and calibration of test stands
- Supplier audits, QA management services
- Labs in Europe and Asia:

- EFBE Prüftechnik GmbH, Waltrop (Ruhr Area, Western Germany)
- EFBE Co., Ltd., Taichung (Taiwan)

Standards today

- Human Powered Bicycles:
 - ISO 4210:2014, Part 1 ... 9 (City/Trekking, MTB, Road + Young Adult)
 - 16 CFR 1512, various ASTM for cond. 0 ... 3 (acc. ASTM F2043 13)
 - AS/NZS 1927:2010, GB 3565:2005, JIS D 9301:2013, ...
- Electrically Assisted Bikes (EPAC)
 - EN 15194:2017 (replaced EN 15194:2009)
 - Draft for E-MTB: prEN 17404:2019
 - Future: ISO 4210-10

• Cargo Bikes (E-DIN 79010), Trailers, Accessories, ...

Problems European / International Standards

- Standardisation is based on industry consensus
- Process too slow to cover current market trends (E-MTB, Gravel, ...)
- Standards define minimum safety requirements applicable to entry level product, not high-end sporting goods

© Fischer / Inter-Union Technohandel GmbH

Relevance of Standards (EN / ISO)

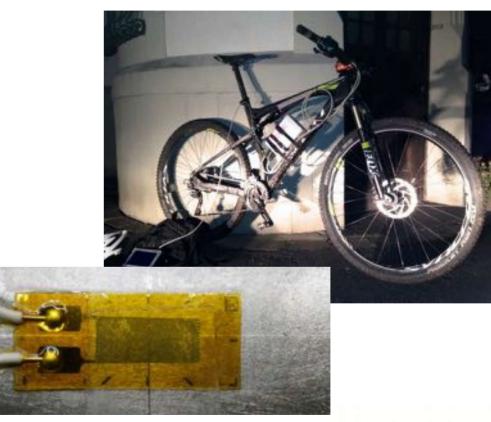
- Compliance with standards does not make a product safe!
- Example: Frame test "forgotten" in EN 14764:2005 and EN 15194:2009

If "science and technology" indicate that EN 14764 is insufficient, a frame tested according to the standard may be unsafe!

Usage Categories

• Necessity to define intended use

- Necessity to account for "Foreseeable Use" (including misuse)
- EN/ISO standards stop at category 3
 - MTB according to ISO 4210 is XC bike
 - AM, Trail, Enduro, DH uncovered by existing standards


© ASTM International ASTM F2043-13

Slide 7 of 18

Measurement and evaluation of operational loads

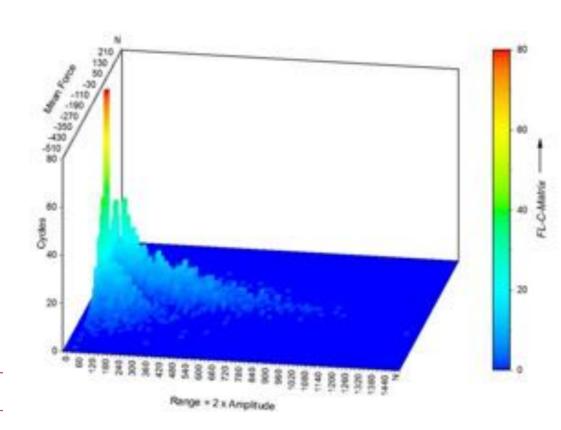
- Identification of suitable places for instrumentation (keeping in mind and checking against established tests)
- Instrumentation of the relevant parts (strain gauges, optical fiber sensors, ...)
- Amplification, filtering and recording of signals (DAQ)
- System to archive recorded data together with relevant metadata (special events, ...)

Slide 8 of 18

Measurement and evaluation of operational loads

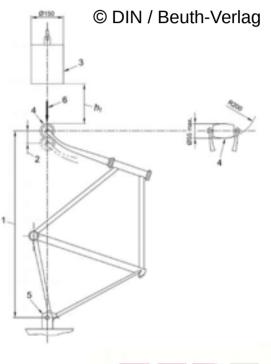
- Execution of test rides, data acquisition, data management
- Individual assessment of special events (crashes, ...)
- Evaluation of strain / time data by means of suitable counting algorithms (rainflow, ...)
- Extrapolation, Superposition to generate test program

- If the operational loads are characterised by special events / singular peak stresses, a sufficiently large pool of data is required (MTB!)
- Planning and selection of suitable test riders, courses/trails, conditions etc. required to get valid results


Operational Loads – EFBE nine-point-eight-one

Slide 10 of 18

Result: Rainflow-Matrix



- Example: Handlebar loads for 1 h bike park, DH
- Matrices can be
 - extrapolated, i.e. may be scaled up to represent x km or y hours under certain use conditions;
 - superimposed, i.e.
 combined with other
 matrices for other
 operational conditions
- → "Synthetic user"

Failure Mode

- Product has to be safe in foreseeable use, but not "indestructable"
- Target: Benign failure mode when overloaded
- Problem: Standard (e.g. fork impact) tests penalise safe failure modes by limiting plastic deformation, i.e. ductile, benign and visible response to overload / misuse

Handling Peak Loads – Safe ≠ Indestructable

 \neq

Safe Failure Mode

Unsafe Failure Mode

© unknown – MTB-News.de

Slide 13 of 18

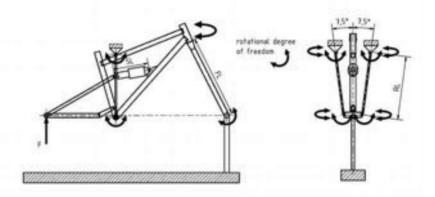
Relevant Load Case – Jump / Drop

- Wheelbase extension typical scenario
- Not well represented by "falling frame" impact test

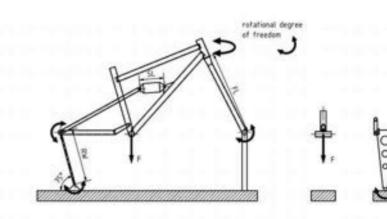
Slide 14 of 18

Peak loads / Maximum/Overload Tests

Bubba Warren @ Whistler, August 2017


Outcome: Broken Ankle

© Jay Wallace / Island Images

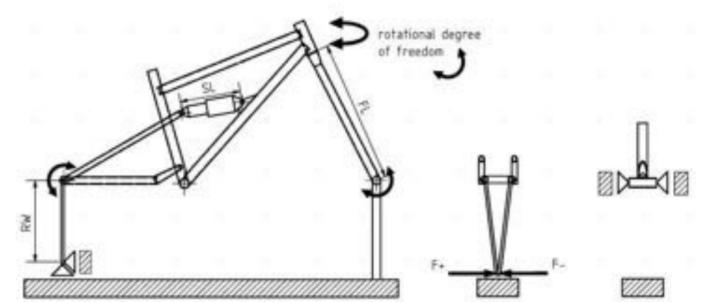


Missing Load Cases – Example: Compression

 Vertical axle load fatigue test in addition to standardised load cases

 Static maximum and overload test

Missing Load Cases – Example: Lateral Loads


 MTB use brings significant lateral loads not represented anywhere in existing standards

Missing Load Cases – Example: Lateral Loads

 lateral load test in addition to standardised load cases

